`
cloudtech
  • 浏览: 4611946 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
文章分类
社区版块
存档分类
最新评论

linux内核中断 ----- tasklet 分析

 
阅读更多

Tasklet机制是一种较为特殊的软中断。Tasklet一词的原意是“小片任务”的意思,这里是指一小段可执行的代码,且通常以函数的形式出现。软中断向量HI_SOFTIRQ和TASKLET_SOFTIRQ均是用tasklet机制来实现的。

从某种程度上讲,tasklet机制是Linux内核对BH机制的一种扩展。在2.4内核引入了softirq机制后,原有的BH机制正是通过tasklet机制这个桥梁来纳入softirq机制的整体框架中的。正是由于这种历史的延伸关系,使得tasklet机制与一般意义上的软中断有所不同,而呈现出以下两个显著的特点:

1. 与一般的软中断不同,某一段tasklet代码在某个时刻只能在一个CPU上运行,而不像一般的软中断服务函数(即softirq_action结构中的action函数指针)那样——在同一时刻可以被多个CPU并发地执行。

2. 与BH机制不同,不同的tasklet代码在同一时刻可以在多个CPU上并发地执行,而不像BH机制那样必须严格地串行化执行(也即在同一时刻系统中只能有一个CPU执行BH函数)。

Linux用数据结构tasklet_struct来描述一个tasklet。该数据结构定义在include/linux/interrupt.h头文件中。如下所示:

struct tasklet_struct
{
  struct tasklet_struct *next;
  unsigned long state;
  atomic_t count;
  void (*func)(unsigned long);
  unsigned long data;
};

各成员的含义如下:

(1)next指针:指向下一个tasklet的指针。

(2)state:定义了这个tasklet的当前状态。这一个32位的无符号长整数,当前只使用了bit[1]和bit[0]两个状态位。其中,bit[1]=1表示这个tasklet当前正在某个CPU上被执行,它仅对SMP系统才有意义,其作用就是为了防止多个CPU同时执行一个tasklet的情形出现;bit[0]=1表示这个tasklet已经被调度去等待执行了。对这两个状态位的宏定义如下所示(interrupt.h):

enum
{
  TASKLET_STATE_SCHED, /* Tasklet is scheduled for execution */
  TASKLET_STATE_RUN /* Tasklet is running (SMP only) */
};

(3)原子计数count:对这个tasklet的引用计数值。NOTE!只有当count等于0时,tasklet代码段才能执行,也即此时tasklet是被使能的;如果count非零,则这个tasklet是被禁止的。任何想要执行一个tasklet代码段的人都首先必须先检查其count成员是否为0。

(4)函数指针func:指向以函数形式表现的可执行tasklet代码段。

(5)data:函数func的参数。这是一个32位的无符号整数,其具体含义可供func函数自行解释,比如将其解释成一个指向某个用户自定义数据结构的地址值。

Linux在interrupt.h头文件中又定义了两个用来定义tasklet_struct结构变量的辅助宏:

#define DECLARE_TASKLET(name, func, data) 
struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(0), func, data }

#define DECLARE_TASKLET_DISABLED(name, func, data) 
struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(1), func, data }

显然,从上述源代码可以看出,用DECLARE_TASKLET宏定义的tasklet在初始化时是被使能的(enabled),因为其count成员为0。而用DECLARE_TASKLET_DISABLED宏定义的tasklet在初始时是被禁止的(disabled),因为其count等于1。

在这里,tasklet状态指两个方面:1. state成员所表示的运行状态;2. count成员决定的使能/禁止状态。

(1)改变一个tasklet的运行状态state成员中的bit[0]表示一个tasklet是否已被调度去等待执行,bit[1]表示一个tasklet是否正在某个CPU上执行。对于state变量中某位的改变必须是一个原子操作,因此可以用定义在include/asm/bitops.h头文件中的位操作来进行。

由于bit[1]这一位(即TASKLET_STATE_RUN)仅仅对于SMP系统才有意义,因此Linux在Interrupt.h头文件中显示地定义了对TASKLET_STATE_RUN位的操作。如下所示:

#ifdef CONFIG_SMP
#define tasklet_trylock(t) (!test_and_set_bit(TASKLET_STATE_RUN, &(t)->state))
#define tasklet_unlock_wait(t) while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { /* NOTHING */ }
#define tasklet_unlock(t) clear_bit(TASKLET_STATE_RUN, &(t)->state)
#else
#define tasklet_trylock(t) 1
#define tasklet_unlock_wait(t) do { } while (0)
#define tasklet_unlock(t) do { } while (0)
#endif

显然,在SMP系统同,tasklet_trylock()宏将把一个tasklet_struct结构变量中的state成员中的bit[1]位设置成1,同时还返回bit[1]位的非。因此,如果bit[1]位原有值为1(表示另外一个CPU正在执行这个tasklet代码),那么tasklet_trylock()宏将返回值0,也就表示上锁不成功。如果bit[1]位的原有值为0,那么tasklet_trylock()宏将返回值1,表示加锁成功。而在单CPU系统中,tasklet_trylock()宏总是返回为1。

任何想要执行某个tasklet代码的程序都必须首先调用宏tasklet_trylock()来试图对这个tasklet进行上锁(即设置TASKLET_STATE_RUN位),且只能在上锁成功的情况下才能执行这个tasklet。建议!即使你的程序只在CPU系统上运行,你也要在执行tasklet之前调用tasklet_trylock()宏,以便使你的代码获得良好可移植性。

在SMP系统中,tasklet_unlock_wait()宏将一直不停地测试TASKLET_STATE_RUN位的值,直到该位的值变为0(即一直等待到解锁),假如:CPU0正在执行tasklet A的代码,在此期间,CPU1也想执行tasklet A的代码,但CPU1发现tasklet A的TASKLET_STATE_RUN位为1,于是它就可以通过tasklet_unlock_wait()宏等待tasklet A被解锁(也即TASKLET_STATE_RUN位被清零)。在单CPU系统中,这是一个空操作。

宏tasklet_unlock()用来对一个tasklet进行解锁操作,也即将TASKLET_STATE_RUN位清零。在单CPU系统中,这是一个空操作。

(2)使能/禁止一个tasklet

使能与禁止操作往往总是成对地被调用的,tasklet_disable()函数如下

(interrupt.h):

static inline void tasklet_disable(struct tasklet_struct *t)
{
  tasklet_disable_nosync(t);
  tasklet_unlock_wait(t);
}

函数tasklet_disable_nosync()也是一个静态inline函数,它简单地通过原子操作将count成员变量的值减1。如下所示(interrupt.h):

static inline void tasklet_disable_nosync(struct tasklet_struct *t)
{
  atomic_inc(&t->count);
}

函数tasklet_enable()用于使能一个tasklet,如下所示(interrupt.h):

static inline void tasklet_enable(struct tasklet_struct *t)
{
  atomic_dec(&t->count);
}

函数tasklet_init()用来初始化一个指定的tasklet描述符,其源码如下所示(kernel/softirq.c):

void tasklet_init(struct tasklet_struct *t,
  void (*func)(unsigned long), 
  unsigned long data)
{
  t->func = func;
  t->data = data;
  t->state = 0;
  atomic_set(&t->count, 0);
}

函数tasklet_kill()用来将一个已经被调度了的tasklet杀死,即将其恢复到未调度的状态。其源码如下所示(kernel/softirq.c):

void tasklet_kill(struct tasklet_struct *t)
{
  if (in_interrupt())
    printk("Attempt to kill tasklet from interruptn");

  while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
    current->state = TASK_RUNNING;
    do {
      current->policy |= SCHED_YIELD;
      schedule();
    } while (test_bit(TASKLET_STATE_SCHED, &t->state));
  }
  tasklet_unlock_wait(t);
  clear_bit(TASKLET_STATE_SCHED, &t->state);
}

多个tasklet可以通过tasklet描述符中的next成员指针链接成一个单向对列。为此,Linux专门在头文件include/linux/interrupt.h中定义了数据结构tasklet_head来描述一个tasklet对列的头部指针。如下所示:

struct tasklet_head
{
  struct tasklet_struct *list;
} __attribute__ ((__aligned__(SMP_CACHE_BYTES)));

尽管tasklet机制是特定于软中断向量HI_SOFTIRQ和TASKLET_SOFTIRQ的一种实现,但是tasklet机制仍然属于softirq机制的整体框架范围内的,因此,它的设计与实现仍然必须坚持“谁触发,谁执行”的思想。为此,Linux为系统中的每一个CPU都定义了一个tasklet对列头部,来表示应该有各个CPU负责执行的tasklet对列。如下所示(kernel/softirq.c):

struct tasklet_head tasklet_vec[NR_CPUS] __cacheline_aligned;
struct tasklet_head tasklet_hi_vec[NR_CPUS] __cacheline_aligned;

其中,tasklet_vec[]数组用于软中断向量TASKLET_SOFTIRQ,而tasklet_hi_vec[]数组则用于软中断向量HI_SOFTIRQ。也即,如果CPUi(0≤i≤NR_CPUS-1)触发了软中断向量TASKLET_SOFTIRQ,那么对列tasklet_vec[i]中的每一个tasklet都将在CPUi服务于软中断向量TASKLET_SOFTIRQ时被CPUi所执行。同样地,如果CPUi(0≤i≤NR_CPUS-1)触发了软中断向量HI_SOFTIRQ,那么队列tasklet_vec[i]中的每一个tasklet都将CPUi在对软中断向量HI_SOFTIRQ进行服务时被CPUi所执行。

队列tasklet_vec[I]和tasklet_hi_vec[I]中的各个tasklet是怎样被所CPUi所执行的呢?其关键就是软中断向量TASKLET_SOFTIRQ和HI_SOFTIRQ的软中断服务程序——tasklet_action()函数和tasklet_hi_action()函数。下面我们就来分析这两个函数。

Linux为软中断向量TASKLET_SOFTIRQ和HI_SOFTIRQ实现了专用的触发函数和软中断服务函数。其中,tasklet_schedule()函数和tasklet_hi_schedule()函数分别用来在当前CPU上触发软中断向量TASKLET_SOFTIRQ和HI_SOFTIRQ,并把指定的tasklet加入当前CPU所对应的tasklet队列中去等待执行。而tasklet_action()函数和tasklet_hi_action()函数则分别是软中断向量TASKLET_SOFTIRQ和HI_SOFTIRQ的软中断服务函数。在初始化函数softirq_init()中,这两个软中断向量对应的描述符softirq_vec[0]和softirq_vec[3]中的action函数指针就被分别初始化成指向函数tasklet_hi_action()和函数tasklet_action()。

(1)软中断向量TASKLET_SOFTIRQ的触发函数tasklet_schedule()

该函数实现在include/linux/interrupt.h头文件中,是一个inline函数。其源码如下所示:

static inline void tasklet_schedule(struct tasklet_struct *t)
{
  if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
    int cpu = smp_processor_id();
    unsigned long flags;

    local_irq_save(flags);
    t->next = tasklet_vec[cpu].list;
    tasklet_vec[cpu].list = t;
    __cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
    local_irq_restore(flags);
  }
}

该函数的参数t指向要在当前CPU上被执行的tasklet。对该函数的NOTE如下:

①调用test_and_set_bit()函数将待调度的tasklet的state成员变量的bit[0]位(也即TASKLET_STATE_SCHED位)设置为1,该函数同时还返回TASKLET_STATE_SCHED位的原有值。因此如果bit[0]为的原有值已经为1,那就说明这个tasklet已经被调度到另一个CPU上去等待执行了。由于一个tasklet在某一个时刻只能由一个CPU来执行,因此tasklet_schedule()函数什么也不做就直接返回了。否则,就继续下面的调度操作。

②首先,调用local_irq_save()函数来关闭当前CPU的中断,以保证下面的步骤在当前CPU上原子地被执行。

③然后,将待调度的tasklet添加到当前CPU对应的tasklet队列的首部。

④接着,调用__cpu_raise_softirq()函数在当前CPU上触发软中断请求TASKLET_SOFTIRQ。

⑤最后,调用local_irq_restore()函数来开当前CPU的中断。

(2)软中断向量TASKLET_SOFTIRQ的服务程序tasklet_action()

函数tasklet_action()是tasklet机制与软中断向量TASKLET_SOFTIRQ的联系纽带。正是该函数将当前CPU的tasklet队列中的各个tasklet放到当前CPU上来执行的。该函数实现在kernel/softirq.c文件中,其源代码如下:

static void tasklet_action(struct softirq_action *a)
{
  int cpu = smp_processor_id();
  struct tasklet_struct *list;

  local_irq_disable();
  list = tasklet_vec[cpu].list;
  tasklet_vec[cpu].list = NULL;
  local_irq_enable();

  while (list != NULL) {
    struct tasklet_struct *t = list;

    list = list->next;

    if (tasklet_trylock(t)) {
      if (atomic_read(&t->count) == 0) {
        clear_bit(TASKLET_STATE_SCHED, &t->state);

        t->func(t->data);
        /*
         * talklet_trylock() uses test_and_set_bit that imply
         * an mb when it returns zero, thus we need the explicit
         * mb only here: while closing the critical section.
         */
         #ifdef CONFIG_SMP
         smp_mb__before_clear_bit();
         #endif

         tasklet_unlock(t);
         continue;
      }
      tasklet_unlock(t);
    }
    local_irq_disable();
    t->next = tasklet_vec[cpu].list;
    tasklet_vec[cpu].list = t;
    __cpu_raise_softirq(cpu, TASKLET_SOFTIRQ);
    local_irq_enable();
  }
}

注释如下:

①首先,在当前CPU关中断的情况下,“原子”地读取当前CPU的tasklet队列头部指针,将其保存到局部变量list指针中,然后将当前CPU的tasklet队列头部指针设置为NULL,以表示理论上当前CPU将不再有tasklet需要执行(但最后的实际结果却并不一定如此,下面将会看到)。

②然后,用一个while{}循环来遍历由list所指向的tasklet队列,队列中的各个元素就是将在当前CPU上执行的tasklet。循环体的执行步骤如下:

  • 用指针t来表示当前队列元素,即当前需要执行的tasklet。
  • 更新list指针为list->next,使它指向下一个要执行的tasklet。
  • 用tasklet_trylock()宏试图对当前要执行的tasklet(由指针t所指向)进行加锁,如果加锁成功(当前没有任何其他CPU正在执行这个tasklet),则用原子读函数atomic_read()进一步判断count成员的值。如果count为0,说明这个tasklet是允许执行的,于是:(1)先清除TASKLET_STATE_SCHED位;(2)然后,调用这个tasklet的可执行函数func;(3)执行barrier()操作;(4)调用宏tasklet_unlock()来清除TASKLET_STATE_RUN位。(5)最后,执行continue语句跳过下面的步骤,回到while循环继续遍历队列中的下一个元素。如果count不为0,说明这个tasklet是禁止运行的,于是调用tasklet_unlock()清除前面用tasklet_trylock()设置的TASKLET_STATE_RUN位。
  • 如果tasklet_trylock()加锁不成功,或者因为当前tasklet的count值非0而不允许执行时,我们必须将这个tasklet重新放回到当前CPU的tasklet队列中,以留待这个CPU下次服务软中断向量TASKLET_SOFTIRQ时再执行。为此进行这样几步操作:(1)先关CPU中断,以保证下面操作的原子性。(2)把这个tasklet重新放回到当前CPU的tasklet队列的首部;(3)调用__cpu_raise_softirq()函数在当前CPU上再触发一次软中断请求TASKLET_SOFTIRQ;(4)开中断。
  • 最后,回到while循环继续遍历队列。

(3)软中断向量HI_SOFTIRQ的触发函数tasklet_hi_schedule()

该函数与tasklet_schedule()几乎相同,其源码如下(include/linux/interrupt.h):

static inline void tasklet_hi_schedule(struct tasklet_struct *t)
{
  if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
    int cpu = smp_processor_id();
    unsigned long flags;

    local_irq_save(flags);
    t->next = tasklet_hi_vec[cpu].list;
    tasklet_hi_vec[cpu].list = t;
    __cpu_raise_softirq(cpu, HI_SOFTIRQ);
    local_irq_restore(flags);
  }
}

(4)软中断向量HI_SOFTIRQ的服务函数tasklet_hi_action()

该函数与tasklet_action()函数几乎相同,其源码如下(kernel/softirq.c):

static void tasklet_hi_action(struct softirq_action *a)
{
  int cpu = smp_processor_id();
  struct tasklet_struct *list;

  local_irq_disable();
  list = tasklet_hi_vec[cpu].list;
  tasklet_hi_vec[cpu].list = NULL;
  local_irq_enable();

  while (list != NULL) {
    struct tasklet_struct *t = list;

    list = list->next;

    if (tasklet_trylock(t)) {
      if (atomic_read(&t->count) == 0) {
        clear_bit(TASKLET_STATE_SCHED, &t->state);

        t->func(t->data);
        tasklet_unlock(t);
        continue;
      }
      tasklet_unlock(t);
    }
    local_irq_disable();
    t->next = tasklet_hi_vec[cpu].list;
    tasklet_hi_vec[cpu].list = t;
    __cpu_raise_softirq(cpu, HI_SOFTIRQ);
    local_irq_enable();
  }
}

Bottom Half机制在新的softirq机制中被保留下来,并作为softirq框架的一部分。其实现也似乎更为复杂些,因为它是通过tasklet机制这个中介桥梁来纳入softirq框架中的。实际上,软中断向量HI_SOFTIRQ是内核专用于执行BH函数的。原有的32个BH函数指针被保留,定义在kernel/softirq.c文件中:

static void (*bh_base[32])(void);

但是,每个BH函数都对应有一个tasklet,并由tasklet的可执行函数func来负责调用相应的bh函数(func函数的参数指定调用哪一个BH函数)。与32个BH函数指针相对应的tasklet的定义如下所示(kernel/softirq.c):

struct tasklet_struct bh_task_vec[32];

上述tasklet数组使系统全局的,它对所有的CPU均可见。由于在某一个时刻只能有一个CPU在执行BH函数,因此定义一个全局的自旋锁来保护BH函数,如下所示(kernel/softirq.c):

spinlock_t global_bh_lock = SPIN_LOCK_UNLOCKED;

在softirq机制的初始化函数softirq_init()中将bh_task_vec[32]数组中的每一个tasklet中的func函数指针都设置为指向同一个函数bh_action,而data成员(也即func函数的调用参数)则被设置成该tasklet在数组中的索引值,如下所示:

void __init softirq_init()
{
  ……
  for (i=0; i<32; i++)
    tasklet_init(bh_task_vec+i, bh_action, i);
  ……
}

因此,bh_action()函数将负责相应地调用参数所指定的bh函数。该函数是连接tasklet机制与Bottom Half机制的关键所在。

该函数的源码如下(kernel/softirq.c):

static void bh_action(unsigned long nr)
{
  int cpu = smp_processor_id();

  if (!spin_trylock(&global_bh_lock))
    goto resched;

  if (!hardirq_trylock(cpu))
    goto resched_unlock;

  if (bh_base[nr])
    bh_base[nr]();

  hardirq_endlock(cpu);
  spin_unlock(&global_bh_lock);
  return;

resched_unlock:
  spin_unlock(&global_bh_lock);
resched:
  mark_bh(nr);
}

对该函数的注释如下:

①首先,调用spin_trylock()函数试图对自旋锁global_bh_lock进行加锁,同时该函数还将返回自旋锁global_bh_lock的原有值的非。因此,如果global_bh_lock已被某个CPU上锁而为非0值(那个CPU肯定在执行某个BH函数),那么spin_trylock()将返回为0表示上锁失败,在这种情况下,当前CPU是不能执行BH函数的,因为另一个CPU正在执行BH函数,于是执行goto语句跳转到resched程序段,以便在当前CPU上再一次调度该BH函数。

②调用hardirq_trylock()函数锁定当前CPU,确保当前CPU不是处于硬件中断请求服务中,如果锁定失败,跳转到resched_unlock程序段,以便先对global_bh_lock解锁,在重新调度一次该BH函数。

③此时,我们已经可以放心地在当前CPU上执行BH函数了。当然,对应的BH函数指针bh_base[nr]必须有效才行。

④从BH函数返回后,先调用hardirq_endlock()函数(实际上它什么也不干,调用它只是为了保此加、解锁的成对关系),然后解除自旋锁global_bh_lock,最后函数就可以返回了。

⑤resched_unlock程序段:先解除自旋锁global_bh_lock,然后执行reched程序段。

⑥resched程序段:当某个CPU正在执行BH函数时,当前CPU就不能通过bh_action()函数来调用执行任何BH函数,所以就通过调用mark_bh()函数在当前CPU上再重新调度一次,以便将这个BH函数留待下次软中断服务时执行。

(1)init_bh()函数

该函数用来在bh_base[]数组登记一个指定的bh函数,如下所示(kernel/softirq.c):

void init_bh(int nr, void (*routine)(void))
{
  bh_base[nr] = routine;
  mb();
}

(2)remove_bh()函数

该函数用来在bh_base[]数组中注销指定的函数指针,同时将相对应的tasklet杀掉。

如下所示(kernel/softirq.c):

void remove_bh(int nr)
{
  tasklet_kill(bh_task_vec+nr);
  bh_base[nr] = NULL;
}

(3)mark_bh()函数

该函数用来向当前CPU标记由一个BH函数等待去执行。它实际上通过调用tasklet_hi_schedule()函数将相应的tasklet加入到当前CPU的tasklet队列tasklet_hi_vec[cpu]中,然后触发软中断请求HI_SOFTIRQ,如下所示(include/linux/interrupt.h):

static inline void mark_bh(int nr)

{

tasklet_hi_schedule(bh_task_vec+nr);

}

在32个BH函数指针中,大多数已经固定用于一些常见的外设,比如:第0个BH函数就固定地用于时钟中断。Linux在头文件include/linux/interrupt.h中定义了这些已经被使用的BH函数所引,如下所示:

enum {
  TIMER_BH = 0,
  TQUEUE_BH,
  DIGI_BH,
  SERIAL_BH,
  RISCOM8_BH,
  SPECIALIX_BH,
  AURORA_BH,
  ESP_BH,
  SCSI_BH,
  IMMEDIATE_BH,
  CYCLADES_BH,
  CM206_BH,
  JS_BH,
  MACSERIAL_BH,
  ISICOM_BH
};
分享到:
评论

相关推荐

    linux内核tasklet机制.txt

    例如,假设一个数据块已经达到了网线,当中断控制器接受到这个中断请求信号时,Linux内核只是简单地标志数据到来了,然后让处理器恢复到它以前运行的状态,其余的处理稍后再进行(如把数据移入一个缓冲区,接受数据...

    linux操作系统内核技术-uestc课件

     6中断处理程序被分解为top half和bottom half的原因,介绍linux的softirq,tasklet,ksoftirqd和work queue,分析进程与top half,bottom half的竞争情形和同步。(4小时)  7掌握内核同步原理和方法:原子操作,...

    深入分析Linux内核源码

    深入分析Linux内核源码 前言 第一章 走进linux 1.1 GNU与Linux的成长 1.2 Linux的开发模式和运作机制 1.3走进Linux内核 1.3.1 Linux内核的特征 1.3.2 Linux内核版本的变化 1.4 分析Linux内核的意义 ...

    Linux2.6内核标准教程(共计8-- 第1个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    Linux2.6内核标准教程(共计8--第8个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    Linux2.6内核标准教程(共计8--第6个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    Linux2.6内核标准教程(共计8--第3个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    Linux2.6内核标准教程(共计8--第7个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    老同学给的入门级驱动开发资料

    14.Linux内核定时器、工作队列、tasklet 15.Linux字符设备驱动--原子操作、信号量 16.Linux字符设备驱动--平台驱动模型 17.LCD应用程序编程 18.LCD移植 19.LCD驱动 20.input子系统 21.IIC子系统 22.Linux ...

    Linux 系统内核空间与用户空间通信的实现与分析

    Linux 系统内核空间与用户空间通信的实现与分析 Linux 内核模块的运行环境与传统进程间通信 在一台运行 Linux 的计算机中,CPU 在任何时候只会有如下四种状态: 【1】 在处理一个硬中断。 【2】 在处理一个软中断,...

    Linux内核tasklet机制和工作队列

     上面我们介绍了软中断机制,linux内核为什么还要引入tasklet机制呢?主要原因是软中断的pending标志位也32位,一般情况是不随意增加软中断处理的。而且内核也没有提供通用的增加软中断的接口。其次内,软中断处理...

    Linux2.6内核标准教程(共计8--第4个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    Linux2.6内核标准教程(共计8--第2个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    Linux2.6内核标准教程(共计8--第5个)

    然后对Linux内核的3大核心模块——内存管理、进程管理、中断和异常处理进行了深入的分析; 在此基础上,对时间度量、系统调用进行了分析和讨论;最后讲解了Linux内核中常见的同步机制,使读者掌握每处理器变量和RCU...

    linux 内核同步机制

    本文档介绍在linux内核中两个不同进程或者过程访问和使用同一共享资源时,处理顺序的随机性,可能出现访问错误。结果依赖于多个任务的相对执行顺序(竟态条件)。其中处理竟态条件的同步机制在不同内核过程中处理的...

    Linux软中断softirq机制流程图

    这个流程图粗略地描述了softirq, tasklet, bottomhalt, task queue这些对象之间的联系及调用流程。 主要依据:《Linux内核的Softirq机制》和《软中断概况》 图中可能存在错误,希望您的指正!

    疯狂内核之——进程管理子系统

    1.2 Linux的线程——轻量级进程 15 1.3 进程的创建——do_fork()函数详解 19 1.4 执行进程间切换 33 1.4.1 进程切换之前的工作 33 1.4.2 进程切换实务 —— switch_to宏 37 1.4.3 __switch_to函数 39 1.5 fork与...

    Understanding the Linux Kernel

     软中断及tasklet  工作队列  从中断和异常返回  第五章内核同步  内核如何为不同的请求提供服务  同步原语  对内核数据结构的同步访问  避免竞争条件的实例  第六章定时测量  时钟和定时器电路  Linux...

    LINUX设备驱动第三版_588及代码.rar

    tasklet 工作队列 快速参考 第八章 分配内存 kmalloc函数的内幕 后备高速缓存 get_free_page和相关函数 vmalloc及其辅助函数 per-CPU变量 获取大的缓冲区 快速参考 第九章 与硬件通信 I/O端口和I/O内存 ...

Global site tag (gtag.js) - Google Analytics